Nearly Injective Semimodules

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flat semimodules

To my dearest friend Najla Ali We introduce and investigate flat semimodules and k-flat semimodules. We hope these concepts will have the same importance in semimodule theory as in the theory of rings and modules. 1. Introduction. We introduce the notion of flat and k-flat. In Section 2, we study the structure ensuing from these notions. Proposition 2.4 asserts that V is flat if and only if (V ...

متن کامل

Idempotent Subreducts of Semimodules over Commutative Semirings

A short proof of the characterization of idempotent subreducts of semimodules over commutative semirings is presented. It says that an idempotent algebra embeds into a semimodule over a commutative semiring, if and only if it belongs to the variety of Szendrei modes.

متن کامل

On Mode Reducts of Semimodules

Modes are idempotent and entropic algebras. More precisely, an algebra (A,Ω) of type τ : Ω −→ Z is called a mode if it is idempotent and entropic, i.e. each singleton in A is a subalgebra and each operation ω ∈ Ω is actually a homomorphism from an appropriate power of the algebra. Both properties can also be expressed by the following identities: (I) ∀ω ∈ Ω, x . . . xω = x (E) ∀ω, φ ∈ Ω, with m...

متن کامل

Injective and non-injective realizations with symmetry

In this paper, we introduce a natural classification of bar and joint frameworks that possess symmetry. This classification establishes the mathematical foundation for extending a variety of results in rigidity, as well as infinitesimal or static rigidity, to frameworks that are realized with certain symmetries and whose joints may or may not be embedded injectively in the space. In particular,...

متن کامل

Duality and Separation Theorems in Idempotent Semimodules

We consider subsemimodules and convex subsets of semimodules over semirings with an idempotent addition. We introduce a nonlinear projection on subsemimodules: the projection of a point is the maximal approximation from below of the point in the subsemimodule. We use this projection to separate a point from a convex set. We also show that the projection minimizes the analogue of Hilbert’s proje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences

سال: 2019

ISSN: 2312-8135,1992-0652

DOI: 10.29196/jubpas.v27i1.2062